Commit b87b0b79 authored by Andreas Schmidt's avatar Andreas Schmidt
Browse files

Merge branch 'develop' of git.nt.uni-saarland.de:as/X-Lap into HEAD

parents 4dd623fb effc08ac
......@@ -33,20 +33,33 @@
%% Cell type:code id: tags:
``` python
config = parse_config()
data_files = {
"sender": "~/Work/Publications/rtn-2018/eval/20180417_testbed/",
"receiver": "~/Work/Publications/rtn-2018/eval/20180417_testbed/"
"sender": "~/Work/Publications/rtn-2018/eval/20180420_base1/",
"receiver": "~/Work/Publications/rtn-2018/eval/20180420_base1/"
}
original1 = evaluate(data_files["sender"] + "sender-1000000.csv", data_files["receiver"] + "receiver-1000000.csv", config=config, kind=0)
x= 4050
original1 = evaluate(data_files["sender"] + "sender-1000000.csv", data_files["receiver"] + "receiver-1000000.csv", config=config, kind=0).iloc[0:x]
original1.name = "1GHz"
original2 = evaluate(data_files["sender"] + "sender-2000000.csv", data_files["receiver"] + "receiver-2000000.csv", config=config, kind=0)
original2 = evaluate(data_files["sender"] + "sender-2000000.csv", data_files["receiver"] + "receiver-2000000.csv", config=config, kind=0).iloc[0:x]
original2.name = "2GHz"
original3 = evaluate(data_files["sender"] + "sender-3000000.csv", data_files["receiver"] + "receiver-3000000.csv", config=config, kind=0)
original3 = evaluate(data_files["sender"] + "sender-3000000.csv", data_files["receiver"] + "receiver-3000000.csv", config=config, kind=0).iloc[0:x]
original3.name = "3GHz"
dfs = [original1, original2, original3]
data_files = {
"sender": "~/Work/Publications/rtn-2018/eval/20180420_changed/",
"receiver": "~/Work/Publications/rtn-2018/eval/20180420_changed/"
}
original4 = evaluate(data_files["sender"] + "sender-1000000.csv", data_files["receiver"] + "receiver-1000000.csv", config=config, kind=0).iloc[0:x]
original4.name = "1GHz [2]"
original5 = evaluate(data_files["sender"] + "sender-2000000.csv", data_files["receiver"] + "receiver-2000000.csv", config=config, kind=0).iloc[0:x]
original5.name = "2GHz [2]"
original6 = evaluate(data_files["sender"] + "sender-3000000.csv", data_files["receiver"] + "receiver-3000000.csv", config=config, kind=0).iloc[0:x]
original6.name = "3GHz [2]"
dfs = [original1, original4, original2, original5, original3, original6]
```
%% Cell type:markdown id: tags:
## Traces
......@@ -65,11 +78,11 @@
``` python
def multi_trace_jitter(dfs, config):
for df in dfs:
print("############################ {} ############################".format(df.name))
jitter.trace_jitter(df, config=config, threshold=200)
jitter.trace_jitter(df, config=config, threshold=500)
multi_trace_jitter(dfs, config)
```
%% Cell type:markdown id: tags:
......@@ -160,11 +173,5 @@
%% Cell type:code id: tags:
``` python
timing_behaviour(original2, original3, config)
```
%% Cell type:code id: tags:
``` python
```
......
#define XLAP
#include "xlap.h"
......
......@@ -17,8 +17,8 @@ def corr_multi(dfs, duration, **kwargs):
for df in dfs:
names.append(df.name)
colors = ["green","blue","orange"]
markers = ["v", "^", ">", "<"]
colors = ["green","blue","orange","purple","red","pink"]
markers = ["v", "^", ">", "<", "+"]
for idf, df in enumerate(dfs):
corr(df, duration, color=colors[idf % len(colors)],
marker=markers[idf % len(markers)], **kwargs)
......
import math
import numpy as np
from .util import cdf, extract_durations
from scipy import stats
import matplotlib.pyplot as plt
import xlap.analyse.latency as latency
confidence = 0.99
def remove_outliers(data):
m = 2
u = np.mean(data)
s = np.std(data)
filtered = [e for e in data if (u - 2 * s <= e and e <= u + 2 * s)]
return filtered
def samples_are_different(sample1, sample2):
# TODO: handle insufficient data. This case typically occurs when a duration is always zero.
if 1 >= len(sample1) or 1 >= len(sample2) or 0 == np.std(sample1) or 0 == np.std(sample2):
print("insufficient data")
return 0
a2, critical, pvalue = stats.anderson_ksamp([sample1, sample2])
if a2 > critical[4]:
return 1 # KS reject: samples are different
else:
return 0 # KS accept: samples are equal or similar
def duration_to_string(d):
return str(d['Start']) + "->" + str(d['Stop'])
def analyse(df1, df2, config, export=False):
for d in latency.get_durations(df1, config):
data1 = df1[d['Stop']] - df1[d['Start']]
data2 = df2[d['Stop']] - df2[d['Start']]
if samples_are_different(remove_outliers(data1), remove_outliers(data2)) and samples_are_different(data1, data2):
print(duration_to_string(d) + " has changed: "+str(np.mean(data1))+"+-"+str(np.std(data1))+" <-> "+str(np.mean(data2))+"+-"+str(np.std(data2))+" ")
else:
print(duration_to_string(d) + " has not changed significantly")
......@@ -178,6 +178,32 @@ def _plot_critical_regions(hdb):
plt.savefig("latency-criticality.pdf")
plt.close()
def get_durations(df, config):
hb = []
events = [column for column in df.columns if column.endswith("_T")]
for event1 in df[events]:
for event2 in df[events]:
if str(event1) == str(event2):
continue
if _happens_before(df, event1, event2, config):
hb += [{'Start': str(event1), 'End': str(event2)}]
hdb = []
e2e = list(df['EndToEnd_D'])
for event1 in df[events]:
for event2 in df[events]:
if str(event1) == str(event2):
continue
# if _locally_happens_directly_before(df, event1, event2, hb, config):
if _happens_directly_before(df, event1, event2, hb):
# compute the correlation between e2e latency and event1-event2 latency
l3 = list(df[event2] - df[event1])
hdb += [{'Start': str(event1), 'Stop': str(event2), 'Source': 'cfa'}]
return hdb
def analyse(df, config):
hb = []
......
......@@ -3,10 +3,12 @@ import argparse
from xlap.parse import evaluate, parse_config
import xlap.analyse.jitter as jitter
import xlap.analyse.latency as latency
import xlap.analyse.diff as difference
tasks = {
"jitter": None,
"latency": None,
"difference": None,
"capture": None
}
......@@ -45,6 +47,15 @@ def main():
df_data = evaluate(data_files["sender"], data_files["receiver"], config=config, kind=0)
a = latency.analyse(df_data, config)
print(a.corr.sort_values(ascending=False))
elif command == "difference":
df_data1 = evaluate("../prrt/out/s.csv", "../prrt/out/r.csv", config=config, kind=0)
# sanity check:
#df_data2 = evaluate("../prrt/out/s.csv", "../prrt/out/r.csv", config=config, kind=0)
# same setup, different measurement run:
#df_data2 = evaluate("../prrt/out/s+same.csv", "../prrt/out/r+same.csv", config=config, kind=0)
# different setup:
df_data2 = evaluate("../prrt/out/s+send.csv", "../prrt/out/r+send.csv", config=config, kind=0)
difference.analyse(df_data1, df_data2, config)
else:
df_data = evaluate(data_files["sender"], data_files["receiver"], config=config, kind=0)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment